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Abstract

Particle charge evolution equation is considered in the presence of di2usion and drifts combined with bipolar
and radioactive charging in the vicinity of absorbing surfaces (walls). Boundary conditions to be prescribed
for solving the mean charge evolution equation have been derived. It is shown that the mean charge J (x) at
a distance x from the surface (x = 0) satis5es the boundary condition
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x=0

=
U (0)
2D(0)

[�J (0) + �2
0];

where U (x) and D(x) are the drift velocity and di2usion coe9cients respectively, � = 1 (0) for radioactive
(non-radioactive) aerosols, and �2

0 is the variance of the Boltzmann charge distribution. Using this, speci5c
cases of charge build-up of radioactive particles undergoing turbulent di2usion near walls is examined. Ra-
dioactive particle charges are found to increase both for zero and negative electric 5elds, although the increases
are far smaller than those expected from stationary-state formulae. The results are further discussed. ? 2002
Elsevier Science Ltd. All rights reserved.

1. Introduction

The evolution of charge distributions on aerosol particles suspended in stagnant and homogeneous
ionic environments is commonly described by stochastic charging equations (Gunn, 1954; Hop-
pel & Frick, 1986) which account principally for charge Guctuations. In many situations involving
particle charging in the presence of external forces or Gows (Hoppel & Gathman, 1970; Stechkina,
Kirsh, & Zagnit’ko, 1982; Romay, Pui, & Adachi, 1991) it becomes necessary to include e2ects
of di2usion and drift in addition to charge Guctuations. These situations are likely to be further
relevant for the cases of radioactive aerosol behaviour in reactor containment studies as pointed out
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by Clement and Harrison (2000). Mayya and Malvankar (1993) and Mayya (1994) discussed the
process of electro-migration of non-radioactive particles in bipolar ionic environments and formulated
a description based on charging induced di2usion. They, however, ignored molecular and turbulent
di2usion processes and did not include radioactive particles.

Through a series of papers, Clement and Harrison (1992, 1995, 2000) and Clement, Calderbank,
and Harrison (1994) have systematically examined the theory of self-charging of radioactive aerosols.
In their recent work, Clement and Harrison (2000; referred to hereafter as CH2000) set up the most
general form of particle charge evolution equation, by including self-charging, bipolar charging,
di2usion and drift. From these, they derived the reduced equations for the evolution of the number
concentration and the mean charge of the particles. Apart from being simpler than the full stochastic
charging equation, the reduced equations provide direct descriptions for the quantities of practical
interest, viz., the concentration pro5les and the mean charges.

An important aspect discussed by CH2000 pertains to the increase of mean charges of radioactive
particles in con5ned geometries. This is due to a suppression of negative ion concentrations resulting
from the reduced ranges of beta particles as well as increased wall losses of ions. Gensdarmes,
Boulaud, and Renoux (2000) appear to have found a qualitative evidence for the increased radioactive
particle charges from their Gow tube experiments. By analogous reasoning, one may deduce that
radioactive particle charges would, in general, increase as they approach a surface, due to the lowering
of ion concentrations in its vicinity. The increased particle charges will not only enhance their
deposition rates through image-induced e2ects, but also cause space charge e2ects. This situation
might be quite relevant in the context of reactor accident scenarios, wherein radioactive particles
will be released into an ionized air space in the containment and will begin to migrate to the walls
with increasing charges. As a 5rst guess, if one employs the stationary-state formula (Clement &
Harrison, 1992) for the charge build-up, viz.,

J =
	
0

e�−n−
;

(where, J is the mean charge, 
0 permittivity of free space, e-elementary charge, �−; n− negative ion
mobility and concentration, respectively), one obtains the unphysical result that the particle charges
will be in5nity at the walls since n− vanishes at that point. This arises because of our neglecting
the migration e2ects originating from particle di2usion and drift motions (if existing), which act
as limiting factors in the growth of charges. The example considered above, thus, focuses on the
necessity of having to include particle di2usion and other motions in order to arrive at reasonable
estimates of charges of radioactive particles.

However, there exists a major di9culty in solving the mean charge evolution equation derived by
CH2000. Their derivation does not specify the boundary condition for the charge at the surface, which
is one of the two necessary conditions required for solving the boundary value problems associated
with di2usion equation. While one of the boundary conditions may be speci5ed as the value of the
mean charge far away from the surface, the other boundary condition at the surface is not at all
obvious. It may be added that in the case of the equation for the number concentration (N (x)), the
two boundary conditions are well known, viz., the absorption boundary condition, N (0) = 0 and the
asymptotic condition in the bulk, N (x) → N� as x → ∞. There is no physical basis for extending
the absorption condition for the mean charge since (see Section 2) it is de5ned as the ratio of the
charge density and the number concentrations both of which vanish at the surface, and their ratio



Y.S. Mayya et al. / Aerosol Science 33 (2002) 781–795 783

X

- E

- +   + - - +   - -   +   + + -

 - +   - -  +   +     +    -  +  + - - Particle

 + - +-   + - - - - + - - +

- + + - - +   + - +  - -   

  -  +  -  +  -  + -  +

- - -  +   +     + - - +  - Negative ion

Wall - + - + + - + - - + -

- +  - - +   - -  +  - -  + - Positive ion

- +   + - - +  + - + - - + - +

   - - -  +   +     + - -  +  - +

   Y

Fig. 1. Schematic diagram of particle–ion system near an absorbing wall.

might have a 5nite, nonzero limit. The situation thus calls for a separate analysis of the mean charge
evolution equation starting from fundamental considerations.

This paper aims at such an analysis and obtains a derivation of the boundary conditions for
the mean charge in a consistent manner. The key assumption is the validity of the Smoluchowski
absorption condition for the charge distribution function, namely that it vanishes at the absorbing
surface regardless of charge. This assumption essentially provides a simple framework and is not
strictly valid from a kinetic point of view, which takes inertial e2ects (Crump & Seinfeld, 1981)
and charge–velocity Guctuations in an electric 5eld, into account. These aspects are not considered
here.

2. Mean charge evolution equation

In order to obtain the boundary conditions, it is necessary to outline, in brief, the derivation of
the equations proposed by CH2000 for the number concentration and the mean charge. While, the
equations of CH2000 were presented in three-dimensional form, we restrict to the one-dimensional
case of aerosol particles (radioactive or otherwise) undergoing bipolar charging in an air space
bounded on one side by an absorbing wall (Fig. 1). In addition, let us impose di2usive and electric
5eld-induced drift motions in the direction normal to the wall, and possibly a convective Gow parallel
to the wall. Let the origin be 5xed at a point on the wall with X -axis normal to it and Y -axis along
the direction of Gow along the wall. Su9ciently far from the wall (x → ∞), the particles as well
as the ions are assumed to be well mixed having uniform and steady concentrations denoted by
N�; n+∞ and n−∞, respectively. It is presumed that these quantities are sustained due to external
sources coupled with turbulence in the bulk air space. The ions would set up di2ering pro5les in
the vicinity of the wall when electric 5elds are present.



784 Y.S. Mayya et al. / Aerosol Science 33 (2002) 781–795

Let P(q; x; y; t) denote the concentration of particles having charge unit q, at the point x; y at
time t. Let V be the convective Gow velocity (assumed constant) in the Y -direction, U (x) be the
5eld induced particle drift velocity per unit charge along X and D(x) be the di2usion coe9cient
involving both Brownian and turbulent components. If the local electric 5eld is E(x); U (x)=B:E(x)
where B is the particle mobility per unit charge. P(q; x; y; t) satis5es the equation
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+ V
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@y

+
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@x

[
−D(x)

@P
@x

+ qU (x)P
]
= Q(q; x; y; t); (1)

where

Q(q; x; y; t) = [K+(q− 1)n+(x; y) + 	]P(q− 1; x; y; t)

+ [K−(q+ 1)n−(x; y)]P(q+ 1; x; y; t)

− [K+(q)n+(x; y) + 	+ K−(q)n−(x; y)]P(q; x; y; t): (1a)

The terms contained in Q(x; y; t) account for bipolar charging due to ions {through the attachment
coe9cients, K�(q)} and due to beta emissions with a positive charge generation rate of 	 per
particle. As the solution of Eq. (1) is quite formidable, and also since the knowledge of the full
charge distribution near surfaces is generally not of practical interest, it su9ces to obtain information
on the number density N (x; y; t) and the mean charge J (x; y; t). To this end, we reduce Eq. (1) upon
de5ning the following moments with respect to q:

N (x; y; t) ≡ P0(x; y; t) =
∑
q

P(q; x; y; t);

P1(x; t) =
∑
q

qP(q; x; y; t);

P2(x; t) =
∑
q

q2P(q; x; y; t): (2)

From Eq. (1), the 5rst two moments de5ned above may be shown to satisfy the following equations:
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= �(x; y; t); (4)

where

�(x; y; t) =
∑
q

[K+(q)n+(x; y) + 	− K−(q)n−(x; y)]P(q; x; y; t): (5)

Eqs. (3) and (4) are not closed because of their dependence on P2 and �. If we set-up a moment
equation for P2, it would depend upon higher moments and so on. Similarly the quantity �, being
a sum over the attachment coe9cients weighted by the charge distribution, depends on all orders
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of moments. Closure is achieved by relating P2 and � to the lower moments P1 and N , through
an approximation. For this, one sets up a di2erential form of the charging term Q valid in the
continuum limit, (Mayya & Malvankar, 1993) and develops asymptotic solutions around the mean
charge J . For a constant J , the asymptotic charge distribution has a shifted Gaussian form given by
Mayya and Malvankar (1993) and Clement and Harrison (1995)

Pasy(q; x; t) =
N (x; y; t)

�
√
2�

exp
[
−(q− J )2

2�2

]
; (6)

where, � is the standard deviation of the charge distribution. For the purpose of achieving closure, we
assume that Eq. (6) continues to hold in the sense of a local equilibrium approximation even when
J is space–time dependent. With this, the reduced equations derived for J and N would represent
di2usion approximations, as they would be accurate upto derivatives of second order in space and
5rst order in time. From Eq. (6) it follows that

P2(x; y; t) ≈ (J 2 + �2)N (x; y; t); (6a)

where J ≡ J (x; y; t) is de5ned as the ratio of the particle charge density to the number concen-
tration, i.e.,

J (x; y; t) =
P1(x; y; t)
N (x; y; t)

: (7)

In view of the discussions following Eq. (6), the quantity �2 may be prescribed as the variance of
the local equilibrium charge distribution, generalised to include the case of radioactive aerosols by
Clement and Harrison (1995), i.e.,

�2 = �J + �2
0; (8)

where, �= 0 for nonradioactive particle,

�= 1 for radioactive particles: (8a)

The quantity �2
0 is the variance of the Boltzmann charge distribution (for nonradioactive aerosols),

i.e.,

�2
0 =

r
rc
: (8b)

where, r is the radius of aerosol particle and rc ≡ e2=4�
0kbT ≈ 56 nm at 300 K, is the Coulomb
radius.

Using Eqs. (6a) and (5), the K’s may be expanded around q= J as a Taylor series and the sum
in Eq. (5) may be replaced by an integral. With this, in the limit of R�rc, the distribution-weighted
sum of K’s may be replaced, to a good accuracy, by the values of K’s at the mean charge
J multiplied by N . i.e.,

�(x; y; t) ≈  (x; y; J ):N (x; y; t); (9)

where,  (x; y; J ) ≡ [K+(J )n+(x; y) + 	− K−(J )n−(x; y)].
Eq. (9) can be shown to be exact for the cases of symmetrical ion charging and also in the limit

of strong positive charging due to beta emissions (CH2000). Substituting Eqs. (6a), (7) and (9)
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into Eqs. (3) and (4), the following closed system of equations is obtained for N and J :
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[U (x)�2N ] =  (x; y; J ):

(11)

It may be added that Eqs. (10) and (11) may also be arrived at from an alternative, somewhat
mathematically complicated approach that does not explicitly invoke the assumption of a shifted
Gaussian (Eq. (6)), but involves recasting Eq. (1) in terms of a new set of co-ordinates, q′ = q −
J (x; t); x′ = x; t′ = t. Upon applying closure to the moment hierarchy of this equation, one may
arrive at Eqs. (10) and (11) through a series of systematic approximations.

3. Derivation of boundary conditions for J (X )

As discussed in the Introduction, it is necessary to prescribe boundary conditions (BCs) for solving
Eq. (11) near surfaces. For simplicity of derivation, we consider a steady-state situation in which
particles are being constantly driven to the wall from a steady concentration in the bulk. Under the
assumption of steady-state, the moment equations (Eqs. (3) and (4)) reduce to
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−D(x)
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+ U (x)P1

]
= 0; (12)

V
@P1

@y
+

@
@x

[
−D(x)

@P1

@x
+ U (x)P2

]
= �(x; y): (13)

Given n±∞, a corresponding steady-state charge distribution would exist on particles having a mean
charge J�. On the wall, we invoke the Smoluchowski absorption condition for particle charge
distribution, as well as for ion concentrations:

P(q; 0; y) = n+(0; y) = n−(0; y) = 0: (14a)

This automatically implies, in view of Eqs. (2) and (5), that

N (0; y) = P1(0; y) = P2(0; y) = �(0; y) = 0: (14b)

Next, we assume, quite justi5ably, that the parameters D(x); U (x) and all the moments of the
charge distribution function are Taylor expandable in x around x=0. The expansion coe9cients may
have y-dependencies. In view of Eq. (14b), the constant term of the Taylor expansion will be zero
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for the moments and hence one may write

N (x) = a1x + a2x2 + · · · ; (15a)

P1(x) = b1x + b2x2 + · · · ; (15b)

P2(x) = c1x + c2x2 + · · · ; (15c)

�(x) = �1x + �2x2 + · · · ; (15d)

D(x) = d0 + d1x + d2x2 + · · · ; (15e)

U (x) = u0 + u1x + u2x2 + · · · : (15f)

Upon substituting Eqs. (15a)–(15f) in Eq. (12), and noting that the coe9cients are functions of y
only, one may write

d
dx

[− (d0 + d1x + · · ·)(a1 + 2a2x + · · ·) + (u0 + u1x + · · ·)(b1x + · · ·)] + V [xa′1 + · · · ] = 0:

(16)

Upon collecting the coe9cients of x0 in Eq. (16), one obtains

2a2d0 + d1a1 − u0b1 = 0

or

a2 =
u0b1 − a1d1

2d0
: (17a)

Similarly, upon substituting Eq. (15a)–(15f) in Eq. (13), one obtains

b2 =
u0c1 − b1d1

2d0
: (17b)

From Eqs. (7), (15a) and (15b), the mean charge J may be given by

J (x) =
P1

N
=

b1 + b2x + · · ·
a1 + a2x + · · · ⇒ J (0) =

b1
a1

: (18)

Therefore, b1 = J (0)a1.
Let us evaluate the gradient of the mean charge w.r.t. x at x = 0: Upon di2erentiating Eq. (18)

w.r.t. x and setting x = 0, one obtains

@J
@x

∣∣∣∣
x=0

=
b2a1 − a2b1

a21
: (19a)

Upon substituting for b2 and a2 from Eqs. (17a) and (17b), and for b1 from Eq. (18), Eq. (19a)
yields

@J
@x
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x=0

=
u0

2d0a21
[c1a1 − a21J

2(0)]: (19b)
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It is required to eliminate c1 from Eq. (19b) in terms of a1. For this, invoke the second moment
closure approximation (Eq. (6a)) along with the expansion for P2 given in Eq. (15c). It easily
follows that

c1 = a1{J 2(0) + �J (0) + �2
0}: (20a)

Upon substituting this in Eq. (19b) and simplifying, one obtains
@J
@x

∣∣∣∣
x=0

=
u0
2d0

[�J (0) + �2
0]: (20b)

Since u0 and d0 are the drift and the di2usion coe9cients evaluated at the boundary, i.e., U (0) and
D(0), we obtain the required boundary condition for the mean charge J (x) in terms of the known
parameters:

@J
@x

∣∣∣∣
x=0

=
U (0)
2D(0)

[�J (0) + �2
0]: (21a)

Since � = 0 for nonradioactive particles, Eq. (21a) implies a “prescribed gradient” BC at x = 0.
For radioactive particles, � = 1 and the boundary condition is of the “mixed type”. When no 5eld
induced drift exists (U (0) = 0) both cases reduce to the Neumann type boundary condition, viz.,

@J
@x

∣∣∣∣
x=0

= 0 for U (0) = 0: (21b)

This completes our derivation of the boundary conditions for Eq. (11) under the assumption of a
steady-state. One may go through the same arguments for time dependent cases as well and arrive
at the BC in Eq. (21a).

4. Growth of radioactive particle charges

In order to illustrate the usefulness of the BCs derived above, typical case studies will now be
taken up for the growth of mean charge of radioactive aerosols near absorbing surfaces by solving
Eqs. (10) and (11) under steady-state conditions. For simplicity, situations without convective Gows
are only considered (i.e., V = 0). When no electric 5eld is present, no net space charge exists;
even then, radioactive particles would gain excess mean charges while approaching the boundary
due to a suppression of negative ion concentration in its vicinity. However, when electric 5eld is
present, space charge e2ects have to be taken into account by coupling the Poisson’s equation to
the ion balance equation. For the present, the aerosol-ion system is treated in the dilute limit, i.e.,
no space charge e2ects are included. Space-charge e2ects become signi5cant when the parameter
s ≡ 4�rcDin∞=ke�1, where Din∞ are the molecular di2usion coe9cient and bulk concentrations of
ions and ke(s−1) is the parameter of quadratic turbulence (see below). For the parameters used in
the foregoing calculations, s ∼ 1 and hence one can expect small corrections due to space–charge
considerations. These are ignored for the present and we focus mainly on illustrating the applicability
of the BCs to the charging problem.

Eq. (11) now becomes one-dimensional dependent only on x. Following Crump and Seinfeld
(1981), the turbulent di2usion coe9cient is assumed to have a quadratic form, i.e.,

D(x) = D0 + kex2: (22)
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where ke is the coe9cient (s−1) of eddy di2usion. One may write down similar form for the ion
di2usion coe9cients as well, by replacing the Brownian di2usion coe9cient D0 by the molecular
di2usion coe9cient for ions, Di.

4.1. Case (i): No electric .eld (E;U = 0)

In the absence of external 5elds, Eq. (10) yields the following particle concentration pro5le N (x)
(Crump and Seinfeld, 1981):

N (x) = N∞
2
�
arctan

[
x
*p

]
; (23a)

where, *p = (D0=ke)1=2; is the particle boundary layer thickness.
Since U = 0, the ion pro5les will be the same for both positive and negative ions assuming that

their mobility di2erences are negligible. They have the same form as N (x), with *p being replaced
with the ion boundary layer thickness, *i = (Di=ke)1=2:

n±(x) = n∞
2
�
arctan

[
x
*i

]
: (23b)

It may be noted from the arguments of CH2000, that for radioactive aerosols, with considerable
positive charge build-up, positive ion concentration is not of serious relevance and hence K+(J )n+

term may be neglected in  de5ned in Eq. (9). Also, in the continuum regime, one may approximate,
K−(J ) ≈ e�J=
0. With these, Eq. (11) reduces to

− @
@x

[
D(x)

@J
@x

]
− 2D(x)

1
N

@N
@x

@J
@x

= 	− e�n−(x)

0

: J (24)

subject to the BCs

J (∞) = J∞ =
	
0

e�n−(∞)
(24a)

and

J ′(0) = 0 (from Eq: (21b):

Since solutions to Eq. (24) are not analytically tractable, we have integrated it numerically. The
parameters chosen are 	=1 s−1; ke=1 s−1; r=0:1 �m and n±∞=4×105 cm−3, representing moderate
radioactivity, ionization levels and weak turbulence. The corresponding particle mean charge in the
bulk can be obtained as J� = 1. Also the boundary layer parameters turn out to be *p = 15 �m for
particles and *i = 1:8 mm for ions. Information on N� is not required since only N ′(x)=N (x) enters
into Eq. (24).

The variations of the particle and the ion pro5les as a function of a dimensionless distance,
x∗= x=*p, are shown in Fig. 2. While the particle pro5les are nearly uniform except within distances
of a few *p’s near the wall, ions attain uniform values at much larger distances, i.e., beyond about
1 cm.

The numerically computed variation of J (x) as a function of x∗ is presented in Fig. 3. From this,
it may be seen that the particle charge increases monotonically as one approached the wall from
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Fig. 2. Variation of the normalized concentrations of the particles and negative ions with respect to the dimensionless
distance x∗(=x=*p) from the wall. The parameters are: E=0; ke =1 s−1; r=0:1 �m; Di =0:035 cm2 s−1, and *p =15 �m.

the bulk. At the wall, the charge attained is more than four times its asymptotic value. Although
this is considerable, the charge build up does not proceed inde5nitely, in spite of the negative ion
concentration being zero at the boundary (see Introduction). This is mainly because of the nonzero
migration velocity of particles brought about by the di2usive Gux at the wall. The charge decays
quite rapidly with distance initially, but approaches its asymptotic value far away from the wall in
a reciprocal fashion with respect to the negative ion pro5le.

Although Eq. (24) cannot be solved analytically, we tried an approximate approach by linearizing
the arctan[x] function around x=0, where the charge build up is expected to occur. Eq. (24) can then
be solved in terms of Airy functions, Ai(z) (Abramowitz & Stegun, 1968) leading to the following
formula for charge at the boundary:

J (0)
J∞

=
(

�*i
2*p

)2=3

:
(
e�n−∞

0ke

)1=3 ∣∣∣∣Ai
′(0)

Ai(0)

∣∣∣∣ : (24b)

The obtained charge build up was too large (J (0)=J� ∼ 25) as compared to the numerical re-
sult (J (0)=J� ∼ 4:4) for the parameters chosen. Nevertheless, the analytical formula in Eq. (24b)
indicates parametric dependencies, viz., J (0)=J� increases with n� and particle radius r (since
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Fig. 3. Variation of the normalized mean charge J (x)=J (∞) of the particle with respect to x∗ corresponding to the case
in Fig. 2. 	= 1 s−1; n±∞ = 4× 105 cm−3 and E = 0.

*p ∼ D1=2
0 ∼ r−1=2) and decreases with ke. These trends have been found valid in numerical compu-

tations as well (not shown).

4.2. Case (ii): Charging with electric .elds

The situations with electric 5elds are far more complicated, since strictly speaking, ion and the
electric 5eld pro5les have to be solved self-consistently using ion migration and Poisson’s equations
to account for space charge e2ects (Hoppel & Gathman, 1970; Stechkina et al., 1982). For reasons
mentioned at the beginning of this section, we ignore this and consider only constant electric 5eld,
along the X -direction. The Crump and Seinfeld (1981) solution for a uniform force 5eld leads to
the following positive and negative ion pro5les:

n±(x) =
exp[± eE*i=kbTarctan(x=*i)]− 1

exp[± �=2eE*i=kbT ]− 1
: (25)

When E is positive (directed away from the wall), n−(x) is nearly constant except within a small
distance at the wall, and n+(x) increases slowly as one moves away from it. This case is not expected
to yield signi5cant increase in the charges of radioactive aerosols. On the other hand, when E is
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Fig. 4. Variation of the normalized negative ion and positive ion concentrations with respect to the dimensionless distance
x∗ for an electric 5eld directed towards wall. The parameters are: ke = 1 s−1; r = 0:1 �m and Di = 0:035 cm2 s−1 and
E =−2 V cm−1.

negative, negative ions will be pushed away from the wall and considerable self-charging may be
expected. Hence we treat the negative E case, 5rst.

4.2.1. E negative
In what follows, only weak 5eld situations are considered so that while the ion pro5les are

polarized, the 5eld adds negligible drift velocity to the particle (since their mobilities are small).
Eq. (10) may now be decoupled from Eq. (11) so that N (x) has essentially the same form as that
given in Eq. (23a).

We examine the numerical solution to the equation for J (Eq. (11) under steady state and V =0.
The particle charging term,  (x; J ) (Eq. (9)) is given by the rhs of Eq. (24). The mixed boundary
condition (Eq. (21a)) has been used. Electric 5elds of −2 and −4 V=cm are considered (wall acts
as negative electrode). Other parameters are kept the same as in the zero 5eld case. Fig. 4 shows
the positive and the negative ion concentration pro5les (for E=−2 V=cm) as a function of normal-
ized distance x∗(= x=*p). As expected, considerable ion polarization is seen even at large values of
x∗(∼ 1000). The variation obtained in J (x) as a function of x∗ for the cases with E = −2 and
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Fig. 5. Variation of the normalized mean charge, J (x)=J (∞) with respect to x∗ when the electric 5eld is directed towards
the wall. The parameters ke; r; Di	; n±∞ are the same as in Figs. 3 and 4.

−4 V=cm are shown in Fig. 5. In the former case, the value of J (0)=J� is about 8.2 which is a
factor about 2 times larger than that in the zero 5eld case. This increases slightly, i.e., to about 9.7
at E = −4 V=cm. Thus, beyond some value, increases in E lead to marginal increases in charges.
It may also be noted from Fig. 5 that the charges fall o2 more slowly with x∗ as compared to the
zero 5eld case.

4.2.2. E positive
As the negative ions are now closer to the wall, one does not expect any signi5cant radioactive

particle charging. Computations of J have been made with 5elds of + 2 and +4 V=cm and are shown
in Fig. 6. The ion pro5les would appear similar to Fig. 4 excepting that the positive and the negative
ion pro5les would be interchanged. Interestingly, as may be seen in Fig. 6, the J (x)=J� curves show
peaks for positive 5elds. The peak values are 1.80 and 1.35 at E = +2 and +4 V=cm occurring at
around x∗ ∼ 2, respectively. The corresponding values at x = 0 are 1.7 and 1.2, respectively. The
peak is a result of the boundary condition (Eq. (21a)), which prescribes that J ′(0) is positive since
U (0) and J (0) are positive. Hence J (x) should increase as x∗ increases from zero. However, the
increase in n−(x) rapidly counteracts the increasing charge, leading to the peak for the latter and a
steady decrease thereafter.
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5. Conclusions

In this paper, the appropriate boundary conditions to the equation of Clement and Harrison (2000)
describing the mean charge evolution of aerosol particles undergoing bipolar charging have been
derived. These conditions are mathematical necessities for computing charge build-up on aerosol
particles in the presence of di2usion onto absorbing surfaces. The derivation includes the cases of
both radioactive and nonradioactive particles. The application of the boundary conditions is demon-
strated by examining the build-up of charges on radioactive particles (beta emitters) through numer-
ical solution of the equations at zero and weak electric 5elds originating from plane surfaces. Their
charges show upto about ten-fold increase near the surfaces maintained at negative potentials. These
charges can enhance the wall deposition rates due to image forces and possibly due to self-generated
electric 5elds proposed by CH2000, for radioactive particles. In fact, in the recent PHEBUS experi-
mental studies, Jones and Kissane (2000) reported an increased deposition of radioactive particle on
heated surface (thermophoretic suppression of deposition), and electrical e2ects were conjectured as
possible explanations. On the whole, these studies support the observations of Clement and Harrison
(2000) that charge e2ects might be important in governing radioactive aerosol removal at surfaces.
In the context of nuclear aerosols, the self-generated 5elds proposed by them will not be uniform
in space, but will increase towards the boundary from a zero value in the bulk region. It is quite
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important to carry out a detailed investigation of these 5elds by considering charge generation due to
radioactive emissions and space–charge e2ects due to ions along with the particle charging equations
presented in this work.
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